If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+10x-2=0
a = 16; b = 10; c = -2;
Δ = b2-4ac
Δ = 102-4·16·(-2)
Δ = 228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{228}=\sqrt{4*57}=\sqrt{4}*\sqrt{57}=2\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{57}}{2*16}=\frac{-10-2\sqrt{57}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{57}}{2*16}=\frac{-10+2\sqrt{57}}{32} $
| 2(9+9x)-5(7x-7)=-7-9x+4x | | x=158+0.03/0.25 | | 1/8(3d-5)=1/4(d+5) | | -7x-91=74+4x | | 39.53=0.25x= | | 2.143x=3.5 | | -4=8(z+5) | | -7(x+4)-10=15+3 | | .3(x+20)+1.1x=55 | | 2k^2-24k=0 | | x/7=3*1/7 | | 11w-8w=12 | | 2(p+5)=28 | | 4=-12v+4+8v+3 | | 6x2+35x+19=0 | | n/11-3=8 | | 12x-35=14x+19 | | 129+192+x=190 | | 5/3x+1=12 | | X+2/4=4x+7 | | 3x/10=1/2 | | 9-8-19x-4x=x | | -52-6x=81-13x | | 11y=4y-42 | | 7h-3=25 | | x2=-36 | | -2/6y=-4 | | r+345=1321 | | 21/7x=31/2 | | 8a–19=5+3G | | 3x-171=167-10x | | -3x²+3x+6=0 |